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Evolution of fractal particles in systems with conserved order parameter
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Computer simulations of the evolution of fractal aggregates in systems with conserved order parameter are
described in this work. The aggregates are generated by diffusion-limited aggregation. This model describes
such important processes as annealing of dendrite inclusions in solids, healing of cracks in ceramics,
temperature-induced transformations in composites, relaxation of rough surfaces, aging of colloid particles, etc.
It is shown that the evolution in fractal media differs significantly from that occurring in initially homogeneous
systems and leads to different values of the scaling exponent. A relationship between the fractal dimension,
mechanism of relaxation, and scaling exponent was also derived.

PACS numbse(s): 05.70.Np, 05.45.Df, 64.75.9

INTRODUCTION COMPUTER SIMULATIONS

L The fractal aggregates were generated by a diffusion-
Nowadays, the concept of fractal geometry is widely useciimited aggregationDLA) mechanism on a square lattice.

for the description of spatially inhomogeneous systemsrpe seaq was placed in the middle of a 5E2 field. Par-
[1-3]. Formation of fractal structures is generic for many 1o were launched, one at a time, from a reflecting equal-

nonequilibrium processes. The most classic example is folgyent houndary and performed a random walk until a colli-
mation of fractal clusters during aggregation in solutions andsjon occurred with a growing cluster. Upon collision, the
gases. Dendritelike structures can be formed by nonequilibyarticle either sticks to the cluster, with a new particle being
rium electrochemical precipitation, phase decompositionjaunched from the boundary, or it reflects and continues its
etc. Cracks and surfaces forming in fracture processes gandom walk. The sticking probabilitieB, to a site withn
certain materials also possess fractal structure. Spatial inh@reighbors were defined as

mogeneities pertinent to such systems significantly influence

their properties and behavior in various physico-chemical P,=min[eE"~% 1], (1)
processes, such as mass or heat transport. In recent years,

certain specific features of diffusion and reaction processewhereE is a constant, so that the probability of sticking to a
in fractal media have been extensively studidd-6] under site with the maximal number of neighbors=4, is always
the assumption that the fractal structure of the substrate reequal to 1. LargeE values correspond to increasing prob-
mains unchanged. However, the excess surface energy ability for the particle to stick to a site having a larger num-
fractal objects gives rise to a number of evolutionary pro-ber of neighbors, and thus lead to denser clusters. For these
cesses leading to significant structural changes. RelevasimulationsE values were taken to be 0, 0.1,..., 2. The clus-
physical examples include annealing of dendrite inclusionder size was chosen to bex30° particles. The fractal di-

in solids, healing of cracks in ceramics, temperature-induceensionD, as determined by the box-counting method, was
transformations in composites, relaxation of rough surfacest-72+0.01 for all clusters. However, the lower cutoff of
aging of colloid particles, etc. In all these cases, the totaffactality Ry (R;~2S/P, whereSis the two-dimensional
amount of matter is constant and the evolution is driven by/olume of the fractal aggregate, aRdis the perimeterin-

the excess surface or interfacial energy. Surface-tensiorf’©ases WItlE (Fig. 1).

driven coarsening of fractal aggregates for different mass

transport mechanisms was studied if7-11. For 107 R, llul
evaporation-deposition dynamics, the coarsening process can 8-
be well described within the well-known Cahn-Hilliard
theory[11,12. 6
In the present research, the Ostwald-ripening type of evo- 4
lution of fractal aggregates under conservative conditions is
studied. The process is assumed to be limited by volume 2 E

diffusion. Results obtained by means of computer modeling
are compared to the evolution of the homogeneous system. A
theoretical model, based on a linear relaxation equation for FIG. 1. Lower cutoff of fractalityR, (in lattice unit3 for DLA
rough surfaces, is proposed for description of the process. clusters grown with differenE values.
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FIG. 2. Free-energy densify{c) as a function of dimensionless
concentration.

The temporal evolution of a fractal cluster was described
by the evolution equation for systems with conserved order
parametefFick’s second law

v 2 © @
_— S C
ot oc’ @
wherec is a dimensionless concentratior=£=0, andM is FIG. 3. Evolution of a fractal aggregat& € 1.5) without frag-
the particle mobility{13,14. mentation:(a) initial cluster, (b) t=10t.u., (c) t=100t.u., (d) t

The free-energy functional was taken to be of the Landau= 400t.u.

Ginzburg form,

smoothed regions increases with time. However, the overall
B N 5 shape of the aggregate resembles that of the initial cluster.
F= fv[f(c)“L 2ke(Ve)T]av, 3 In the second case, the initial cluster rapidly dissociates,

forming many small particle§Fig. 4b)]. Smaller particles
wherek. is a constant related to the interfacial enefgg]. dissolve and larger particles grow as in the classical I__ifshitz-

The free-energy densityf(c) was taken asf(c)=A(c SIyozov-Wagner_moc!e{ll_G—l_a. Howev_er, due_to the inho-
—¢?)2 with two symmetric minima corresponding to bulk Mgeneous spatial distribution of particles stipulated by the

(c=1) and void €=0) phasesFig. 2. Thus, the resulting branched structure of the initial aggregate, they have a char-
evolution equation was ’ acteristic elongated form with the larger axis directed parallel

aclot=—MV?[k.V2c—2A(c—3c?+2c%)]. (4) : g \.~; p
% ! s [
Equation(4) was solved by the explicit Euler method on a ¢ A0 s ' 7 g K ~;§;_ ‘i}-{“ LYt
512x512 grid with a 0.01 time step. For longer times, the | ¥adty 3ie Y Yhwal| Fondy 3\, ¥ Sl
semi-implicit Fourier method15] was used. Parameters in | g .. = #%3¢ D e .;\;&" “j:;:,;.;‘,: '_:f:wvﬂ,:
Eqg. (4) were taken adM =1, k.=1, andA=0.25. A concen- SR SR ".;‘M\‘;“‘f}:ﬁ;; -
tration field corresponding to a fractal cluster generated by 77 ¥ jar¥ 7% Tnfiee gk "";“_’?“Tfﬁ_f‘}’ .’i\,{;‘;‘&-‘\“?ﬁ
the modified DLA mechanism was used as the initial condi-| 57 % FAT. e | 77 9 #ik ':"'\sV.S,'\'?.«'-«
tion, c(r,0). Periodic boundary conditions were used. During R B ':,:,‘s.“ ;','g J?\"g\ i
the evolution, the correlation function of the object, defined i AR b S
as ¥ (a) * L 1“ (b)
. )
.: e . o o LS
C(r,t)y=(c(r+r’,t) c(r',1)), (5) R o o
‘.\: “."... "?. .‘._.0‘;,;‘ : ...‘:. .':. '...t "
where the average is taken over the whole system, was ca, =% o5 4 ";;.:,'-""' . IS .;.' :' °
culated. Bulk and surface fractal dimensions of clusters were| ,asWeae, .?.;’-:?‘“J}‘.'.-:::'“‘ 5s-..,._.°.,‘,"..::' L
estimated by means of the box-counting method. .'.‘,-,:-:;.\‘;s v;'.;;:_ L o'ce = .: » o‘... .
Depending on the ratio between the gyration radiys _-,;3..:( {" R N ey oY et
and lower cutoff of fractalityR, of initial clusters, two pos- STt ES T e | ST gre D B0
sible scenarios of evolution were observed: evolution with- A "/2.. .S N AR LRI
out fragmentation of the initial clustéFig. 3) and evolution e =0 (©) * AN (@

with fragmentation(Fig. 4).

In the first case, the finer details of the structure of the FIG. 4. Evolution of a fractal aggregat& € 0) with fragmen-
object are gradually smoothed out, while the larger structurafation: (a) initial cluster, (b) t=10t.u., (c) t=100t.u., (d) t
features remain unchanged. The characteristic size 0£400t.u.
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to the branch of the cluster from which it evolviflg. 4(c)].
Subsequent evolution leads to spheroidization of fragments
with increased separation between them. However, the spa-
tial distribution of the spherical fragments resembles theyherez=2m. Odd values ofz can appear when the relax-
structure of the initial clustelf~ig. 4(d)]. Both scenarios will  ation dynamic is nonlocal, e.g.z=1 corresponds to
eventually lead to the formation of a single spherical particle giffusion-limited erosion or relaxation through plastic flow,
but that would require an extremely long computational timeyhjle z=3 describes the relaxation through volume diffusion

_ Taking into account the diffusion stability of rods in two 119} whereaz=4 corresponds to evolution under conserva-
dimensions, one can assume that the scenario with fragmefye conditions.

tation is an artifact of finite lattice size, even though some  The solution for Eq(11) is
interesting qualitative patterns were observed. Thus, further

d
Or,_thq:_y|q|th+ Mq (11)

theoretical considerations will be limited to the case of evo- 5 t i
lution without fragmentation. hq(t) =exp(—v[g|*t)hy(0) + deTeXd —v|q|
THEORY X(t=7)]nq(7), (12

It is well known that during the late stages of the evolu-where Fourier transforms of the noise satisfy the following
tion of phase-separating systems described by Ejsand  condition:
(3), well-defined domains of bulkc=1) and void €=0)
phases form. The corresponding interfacial energy is (ng(X,t) (X' ,1))=DcL ™96 +q' S(t—t"). (13

1 We assume that thé,(0) components are not zero, but
U=f chch[f(c)— fo(o)], (6) noise is negligible. Indeed, in our simulations, the noise was
0 solely due to the numerical uncertainties and its amplitude

. . IIl. Thus, Eq12) red t
where fy(c) is the equilibrium free energy of the mixture, was very sma us, Ed12) reduces to

represented by the common tangent lisee Fig. 2 ha(t) =exp(— »|q|%t)h4(0). (14)
Since only one domain exists if the evolution occurs with-
out fragmentation, the evolution in this case is equivalent to Let us now consider the case of a two-dimensional fractal
the surface-tension-driven relaxation of the rough oneparticle with a one-dimensional surface. In order to estimate
dimensional surface of the cluster. The surface can be dehe time dependence of the total lengttof the surface we
scribed by a local height functiom(x,t), x being the coor- write down the following expression fdr:
dinate taken along the surface. The mechanism of mass
transport in this case is volume diffusion. _ A w2
The general linearized growth equations for such a pro- L_f dxy1+(hy)” (15

cess can be expressed[a9]: ) ) ) )
Assuming small gradients in E§15) and expanding to the

oJh first order inh’(x), we obtain
—=—(—»V*)"h+ 7, (7)
ot (h')Z
szdx 1+ — )=L0+%fdx(h)’()2. (16)
where v=Mo. Here,m=1 corresponds to growth in the

presence of external currefite., deposition of materipand
m=2 corresponds to evolution under conservative condi-
tions. Also, » is the stochastic noise term, assumed to be

From Eq.(9) we obtain the following formula foh’(x):

Gaussian and uncorrelated, i.e., satisfying the condition h’(x,t)zif dqg gh,(t)exp(ig-x). (17
(n(xD)n(x',1'))=Dcd%x=x")8(t=t"), (8) Substituting Eq(17) into Eq.(16), we get for the integral
whereD. is a constant-T andd is the dimensionality of
the embedding space. f dx(h)’()zz—f f dq dq’qq’hq(t)hq/(t)f dx
Equation(7) can be solved by the Fourier method. Intro-
ducing Fourier transforms fdu(x,t) and n(x,t) as Xexdi(g+q')x] (18
. or
n0ct= [ dahytexptia-x) ©
f dX(h§)2=f dq Sa,t), (19
and
where
(x,t)=f d (t)exp(iqg-x), (10
7 q 7q(t)expliq S(q,t)=hg(H)h_4(t) (20)

Eq. (7) in the Fourier domain can be written as is the structure factor at time
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FIG. 5. The effective correlation functidﬁ(x,t) of fractal clus-
ter with E=2 for different times of evolution.

Substituting the Fourier components from E@4), we
obtain

| axngy= [ danon yext-2lal)
- f S(a,0exi{ —2/q/t] (21

whereS(q,0) is the structure factor of the initial surface.

Since, for the fractal aggregate in the region of interest,
the structure factor behaves 8&1,0)~q2 2, we obtain the

following equation:

f dX(hf()2=qu ¢ ° exd —2|q|t]. (22

Assuming that the integration is taken frog+=0 to q
= (i.e., the fractal is ideg] integration of Eq(22) yields

D

f dx(h;)Zzi(zyt)@?’VZF(?’_). (23)

z
Substituting this expression into E(.6) yields

L=Lo(1+ktP=3/7), (24

For small times it can be approximated as

L=LoktP~¥7, (25)
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FIG. 6. First zero of effective correlation functidim lattice
units) as a function of time for fractal clusters with differet
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FIG. 7. Box-counting analysis of fractal cluster wit~2 for
different times of evolution.

On the other hand, for the fractal surface the length is
equal,

L~LoRo P, (26)
whereR is the lower cutoff of fractality.

Equating Eqgs(25) and (26) yields the following power
law dependence fdr;:
Rowt(S*D)/ZDwta. (27)

Thus, provided the value of the fractal dimension of the
particle and the mechanism of relaxation are known, we can
calculate the time dependence of the lower cutoff of fractal-
ity. For example, when a typical DLA fractal with=1.71
undergoes relaxation under conservative conditias4),
the exponent will be equal to 0.19.

RESULTS AND DISCUSSION

The structural changes that occur during the evolution of
fractal aggregates were investigated by the analysis of corre-
lation functions of the resulting structures. It was shown that,
for large x, the correlation functiorC(x,t) for timet is al-
most the same as that for the initial clust€(x,0), in the
full agreement with 11]. The effective correlation function
of the systemC(x,t) =C(x,t) — C(x,0), has a characteristic
shape(Fig. 5). Due to the increase of the characteristic size
of the particles, the value df(x,t) grows in comparison

Rall.u.] cE=0.0
sE=03

30 AE=0.5
1vE=1.0
25_ SE=20
20-
15
10
t[t.u.]
10' 10° 10°

FIG. 8. Lower cutoff of fractality(in lattice unitg as a function
of time for fractal clusters with differert.
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TABLE I. Parameter#\, B, and« in Eq. (28) obtained from the TABLE Il. Parameterd\, B, and« in Eq. (28) obtained from the

analysis of correlation functions. box-counting analysis of the surface.

E A B @ E A B @

0.0 2.32:0.05 2.2-0.9 0.249-0.003 0.0 8.7+0.5 0.0£3.0 0.19+0.01
0.3 2.44+0.07 5713 0.262-0.005 0.3 6.6£0.6 —1.2+3.6 0.23:0.02
0.5 2.73:0.08 7.0:1.4 0.252+0.005 0.5 4.2+0.3 2.0:3.0 0.25-0.01
1.0 3.92:0.03 3.2£0.3 0.216-0.001 1.0 4.7+0.2 6.6-1.9 0.22:0.01
1.5 4.40-0.05 13.6:1.0 0.205-0.002 1.5 5.0:0.5 3211 0.21+0.01
2.0 5.73£0.06 —-1.0=04 0.213:0.002 2.0 7.3:0.3 3.7+2.7 0.21£0.01

with C(x,0), thus leading to positive values éf(x t) for cal values of scaling exponents, determined from correlation
small x. At the same time, for relatively large the neigh- function analysis and box-counting analysis, are significantly
borhood is depleted, thus leading to the characteristic minidifferent, probably due to problems with the box-counting

mum of &(x,t). For largex,C(x,t) does not change com- qnalysis for a system having relatively sme}II isolated par-
y ticles. Interestingly, for later stages of evolution, a transition
pared toC(x,0) and thusC(x,t)~0. to a=1% takes place when the initial fractal structure of the
The first zero ofC(x,t), which we denotex., roughly  cluster is completely destroyed, and evolution proceeds as in
corresponds to the mean size of single-phase domains. Thie initially homogeneous system.
temporal dependence of, shown on Fig. 6 can be well
approximated by the equation CONCLUSIONS

X.=A(t+B)“. (29 The evolutionary path of the system was shown to depend

) , on the geometry of the initial particle as described by the
whereA andB are constants andis a scaling exponent. The |qyer cutoff of fractalityR, and gyration radiuRy and the

constanBB is determined by early-stage evolution of the sys-y5jue of the fractal dimensioB. The following main fea-
tem[20,21). ) i ) tures of the evolution were determined.

Structural changes occurring during evolution were also  pyring the evolution, the fractal structure is destroyed on
studied by box-counting analysis of the surfa€@. 7). The  gmg|| length scales; however, on the larger length scales, it is
cluster was covered by a square grid with characteristic SiZgenerally conserved.
|, and the number of squares, containing at least one point ~ The yalue of the scaling exponent for the evolution of a
b(_alonging to the (_:Iuster surface was plotted as a function OIfractaI particle without fragmentationa=0.21+0.01, is
| in log-log coordinates. For relatively smdlithe slope of g hstantially different from that in the homogeneous case,
the corresponding curve is (the surface is one dimen- ,_q 33+0.01. For evolution with fragmentation, the appar-
siona), whereas for largel, the slope is equal to the fractal ent value of the scaling exponent increases WiffiR, . For

dimension of the objecD =1.71. The intersection of these ¢ |56 stages of evolutiom presumably reaches the value
two linear segments defines the characteristic leRgthalso ¢ 1

. .. . 3
proportional to the characteristic length scale on which the The theory developed above has been proven valid in this

fractal structure is destroyeig. 8). _ particular case. It can possibly be applied for prediction of
Results of the correlation function analysig, vs t, for  pehavior of other inhomogeneous systems in diffusion-
clusters with differenk, are shown in Table I, and for the yiven evolutionary processes, thus providing some guide-

box-counting analysisR, vs t, in Table Il. For evolution |ines for further modeling and experimental studies.
without fragmentation, values obtained for the scaling expo-

nentsa agree well. The values lie in the range 0:20.01 for
all structures, thus exhibiting good agreement with theory. It
should be noted that values obtained ®rare relatively This work was partially supported by the Russian Foun-
small (B is much less than the characteristic time of evolu-dation for Basic Research Grant No. 96-03-33122a, Univer-
tion), i.e., the characteristic size of the single-phase domaisities of Russia Program Grant No. 98-06-14-5650, NATO
grows by a power lawl_(t) ~t“. Linkage Grant No. 970608, and International Soros Educa-
For evolution with fragmentation, values obtained for thetional Program Grant Nos. a98-1724, s98-1716, and s98-
scaling exponents are larger than in the first case. Numeri- 1348.

ACKNOWLEDGMENTS

[1] B. B. Mandelbort,The Fractal Geometry of Naturé/V. H. [3] The Fractal Approach to Heterogeneous Chemisédited by
Freeman, New York, 1983 D. Avnir (Wiley, New York, 1989.

[2] Fractals and Disordered Systemedited by A. Bunde and S.  [4] J. S. Havlin and D. Ben-Avraham, Adv. Phy6, 695(1987.
Havlin (Springer-Verlag, New York, 1991 [5] M. Sahimi, Chem. Phys4, 21 (1996.



1194

[6] M. Giona, W. A. Schwalm, M. K. Schwalm, and A. Adrover,

Chem. Eng. Sci51, 4717(1996; 51, 4731(1996; 51, 5065
(1996.

[7] R. Sempereet al, Phys. Rev. Lett71, 3307(1993.

[8] T. Irisawa, M. Uwaha, and Y. Saito, Europhys. Le36, 139
(1995.

[9] N. Olivi-Tran, R. Thouy, and R. Jullien, J. Phys.6| 557
(1996.

[10] R. Thouy, N. Olivi-Tran, and R. Jullien, Phys. Rev5B, 5321
(1997.

[11] M. Conti, B. Meerson, and P. V. Sasorov, Phys. Rev. [8fif.
4693(1998.

[12] J. W. Cahn and J. E. Hilliard, J. Chem. Phg8, 258 (1958.

[13] Y. Wang, L. Q. Chen, and A. G. Khachaturyan,@omputer

Simulation in Materials Science: Nano/Meso/Macroscopic
Space and Time Scale=dited by H. O. Kirchner, L. P. Kubin,

S. V. KALININ et al.

PRE 61

and V. Pontikis(Kluwer Academic, Boston, 1996p. 325.

[14] A. J. Bray, Adv. Phys43, 357 (1994).

[15] L. Q. Chen and J. Shen, Comput. Phys. Comnmi08 147
(1998.

[16] I. M. Lifshitz and V. V. Slyozov, Zh. Eksp. Teor. FiZ35, 479
(1959 (in Russian [Sov. Phys. JETB5, 331(1959].

[17] 1. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solidl§, 35
(1961).

[18] C. Wagner, Z. Elektrochen@5, 581 (196J).

[19] J. Krug, Adv. Phys46, 139(1997.

[20] G. Ramirez-Santiago and A. E. Gonzalez, Physica38 75
(1997.

[21] J. D. Gunton, M. San Miguel, and P. S. SahniPihase Tran-
sitions edited by C. Domb and J. E. LebowitAcademic
Press, London, 1983p. 267.



