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Evolution of fractal particles in systems with conserved order parameter
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Computer simulations of the evolution of fractal aggregates in systems with conserved order parameter are
described in this work. The aggregates are generated by diffusion-limited aggregation. This model describes
such important processes as annealing of dendrite inclusions in solids, healing of cracks in ceramics,
temperature-induced transformations in composites, relaxation of rough surfaces, aging of colloid particles, etc.
It is shown that the evolution in fractal media differs significantly from that occurring in initially homogeneous
systems and leads to different values of the scaling exponent. A relationship between the fractal dimension,
mechanism of relaxation, and scaling exponent was also derived.

PACS number~s!: 05.70.Np, 05.45.Df, 64.75.1g
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INTRODUCTION

Nowadays, the concept of fractal geometry is widely us
for the description of spatially inhomogeneous syste
@1–3#. Formation of fractal structures is generic for ma
nonequilibrium processes. The most classic example is
mation of fractal clusters during aggregation in solutions a
gases. Dendritelike structures can be formed by nonequ
rium electrochemical precipitation, phase decompositi
etc. Cracks and surfaces forming in fracture processe
certain materials also possess fractal structure. Spatial i
mogeneities pertinent to such systems significantly influe
their properties and behavior in various physico-chem
processes, such as mass or heat transport. In recent y
certain specific features of diffusion and reaction proces
in fractal media have been extensively studied@4–6# under
the assumption that the fractal structure of the substrate
mains unchanged. However, the excess surface energ
fractal objects gives rise to a number of evolutionary p
cesses leading to significant structural changes. Rele
physical examples include annealing of dendrite inclusi
in solids, healing of cracks in ceramics, temperature-indu
transformations in composites, relaxation of rough surfac
aging of colloid particles, etc. In all these cases, the to
amount of matter is constant and the evolution is driven
the excess surface or interfacial energy. Surface-tens
driven coarsening of fractal aggregates for different m
transport mechanisms was studied in@7–11#. For
evaporation-deposition dynamics, the coarsening process
be well described within the well-known Cahn-Hilliar
theory @11,12#.

In the present research, the Ostwald-ripening type of e
lution of fractal aggregates under conservative condition
studied. The process is assumed to be limited by volu
diffusion. Results obtained by means of computer mode
are compared to the evolution of the homogeneous system
theoretical model, based on a linear relaxation equation
rough surfaces, is proposed for description of the proces
PRE 611063-651X/2000/61~2!/1189~6!/$15.00
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COMPUTER SIMULATIONS

The fractal aggregates were generated by a diffusi
limited aggregation~DLA ! mechanism on a square lattic
The seed was placed in the middle of a 5123512 field. Par-
ticles were launched, one at a time, from a reflecting equ
event boundary and performed a random walk until a co
sion occurred with a growing cluster. Upon collision, th
particle either sticks to the cluster, with a new particle be
launched from the boundary, or it reflects and continues
random walk. The sticking probabilitiesPn to a site withn
neighbors were defined as

Pn5min@eE~n24!,1#, ~1!

whereE is a constant, so that the probability of sticking to
site with the maximal number of neighbors,n54, is always
equal to 1. LargerE values correspond to increasing pro
ability for the particle to stick to a site having a larger num
ber of neighbors, and thus lead to denser clusters. For t
simulations,E values were taken to be 0, 0.1,..., 2. The clu
ter size was chosen to be 33105 particles. The fractal di-
mensionD, as determined by the box-counting method, w
1.7260.01 for all clusters. However, the lower cutoff o
fractality Ra ~Ra'2S/P, where S is the two-dimensional
volume of the fractal aggregate, andP is the perimeter! in-
creases withE ~Fig. 1!.

FIG. 1. Lower cutoff of fractalityRa ~in lattice units! for DLA
clusters grown with differentE values.
1189 ©2000 The American Physical Society
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1190 PRE 61S. V. KALININ et al.
The temporal evolution of a fractal cluster was describ
by the evolution equation for systems with conserved or
parameter~Fick’s second law!:

]c

]t
52M¹2

dF

dc
, ~2!

wherec is a dimensionless concentration, 1>c>0, andM is
the particle mobility@13,14#.

The free-energy functional was taken to be of the Land
Ginzburg form,

F5E
V
@ f ~c!1 1

2 kc~¹c!2#dV, ~3!

wherekc is a constant related to the interfacial energy@12#.
The free-energy densityf (c) was taken asf (c)5A(c
2c2)2 with two symmetric minima corresponding to bu
(c51) and void (c50) phases~Fig. 2!. Thus, the resulting
evolution equation was

]c/]t52M¹2@kc¹
2c22A~c23c212c3!#. ~4!

Equation~4! was solved by the explicit Euler method on
5123512 grid with a 0.01 time step. For longer times, t
semi-implicit Fourier method@15# was used. Parameters
Eq. ~4! were taken asM51, kc51, andA50.25. A concen-
tration field corresponding to a fractal cluster generated
the modified DLA mechanism was used as the initial con
tion, c(r ,0). Periodic boundary conditions were used. Duri
the evolution, the correlation function of the object, defin
as

C~r ,t !5^c~r1r 8,t ! c~r 8,t !&, ~5!

where the average is taken over the whole system, was
culated. Bulk and surface fractal dimensions of clusters w
estimated by means of the box-counting method.

Depending on the ratio between the gyration radiusRg
and lower cutoff of fractalityRa of initial clusters, two pos-
sible scenarios of evolution were observed: evolution w
out fragmentation of the initial cluster~Fig. 3! and evolution
with fragmentation~Fig. 4!.

In the first case, the finer details of the structure of
object are gradually smoothed out, while the larger structu
features remain unchanged. The characteristic size

FIG. 2. Free-energy densityf (c) as a function of dimensionles
concentration.
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smoothed regions increases with time. However, the ove
shape of the aggregate resembles that of the initial clust

In the second case, the initial cluster rapidly dissocia
forming many small particles@Fig. 4~b!#. Smaller particles
dissolve and larger particles grow as in the classical Lifsh
Slyozov-Wagner model@16–18#. However, due to the inho
mogeneous spatial distribution of particles stipulated by
branched structure of the initial aggregate, they have a c
acteristic elongated form with the larger axis directed para

FIG. 3. Evolution of a fractal aggregate (E51.5) without frag-
mentation:~a! initial cluster, ~b! t510 t.u., ~c! t5100 t.u., ~d! t
5400 t.u.

FIG. 4. Evolution of a fractal aggregate (E50) with fragmen-
tation: ~a! initial cluster, ~b! t510 t.u., ~c! t5100 t.u., ~d! t
5400 t.u.
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to the branch of the cluster from which it evolved@Fig. 4~c!#.
Subsequent evolution leads to spheroidization of fragme
with increased separation between them. However, the
tial distribution of the spherical fragments resembles
structure of the initial cluster@Fig. 4~d!#. Both scenarios will
eventually lead to the formation of a single spherical partic
but that would require an extremely long computational tim

Taking into account the diffusion stability of rods in tw
dimensions, one can assume that the scenario with fragm
tation is an artifact of finite lattice size, even though so
interesting qualitative patterns were observed. Thus, fur
theoretical considerations will be limited to the case of e
lution without fragmentation.

THEORY

It is well known that during the late stages of the evo
tion of phase-separating systems described by Eqs.~2! and
~3!, well-defined domains of bulk (c51) and void (c50)
phases form. The corresponding interfacial energy is

s5E
0

1

dcA2kc@ f ~c!2 f 0~c!#, ~6!

where f 0(c) is the equilibrium free energy of the mixture
represented by the common tangent line~see Fig. 2!.

Since only one domain exists if the evolution occurs wi
out fragmentation, the evolution in this case is equivalen
the surface-tension-driven relaxation of the rough o
dimensional surface of the cluster. The surface can be
scribed by a local height functionh(x,t), x being the coor-
dinate taken along the surface. The mechanism of m
transport in this case is volume diffusion.

The general linearized growth equations for such a p
cess can be expressed as@19#:

]h

]t
52~2n¹2!mh1h, ~7!

where n5Ms. Here, m51 corresponds to growth in th
presence of external current~i.e., deposition of material! and
m52 corresponds to evolution under conservative con
tions. Also, h is the stochastic noise term, assumed to
Gaussian and uncorrelated, i.e., satisfying the condition

^h~x,t !h~x8,t8!&5Dcd
d~x2x8!d~ t2t8!, ~8!

whereDc is a constant;T and d is the dimensionality of
the embedding space.

Equation~7! can be solved by the Fourier method. Intr
ducing Fourier transforms forh(x,t) andh(x,t) as

h~x,t !5E dq hq~ t !exp~ iq•x! ~9!

and

h~x,t !5E dq hq~ t !exp~ iq•x!, ~10!

Eq. ~7! in the Fourier domain can be written as
ts
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]t
hq52nuquzhq1hq ~11!

wherez52m. Odd values ofz can appear when the relax
ation dynamic is nonlocal, e.g.,z51 corresponds to
diffusion-limited erosion or relaxation through plastic flow
while z53 describes the relaxation through volume diffusi
@19#, whereasz54 corresponds to evolution under conserv
tive conditions.

The solution for Eq.~11! is

hq~ t !5exp~2nuquzt !hq~0!1E
0

t

dt exp@2nuquz

3~ t2t!#hq~t!, ~12!

where Fourier transforms of the noise satisfy the followi
condition:

^hq~x,t !hq8~x8,t8!&5DcL
2ddq1q8d~ t2t8!. ~13!

We assume that thehq(0) components are not zero, bu
noise is negligible. Indeed, in our simulations, the noise w
solely due to the numerical uncertainties and its amplitu
was very small. Thus, Eq.~12! reduces to

hq~ t !5exp~2nuquzt !hq~0!. ~14!

Let us now consider the case of a two-dimensional frac
particle with a one-dimensional surface. In order to estim
the time dependence of the total lengthL of the surface we
write down the following expression forL:

L5E dxA11~hx8!2. ~15!

Assuming small gradients in Eq.~15! and expanding to the
first order inh8(x), we obtain

L5E dxS 11
~hx8!2

2 D 5L01 1
2 E dx~hx8!2. ~16!

From Eq.~9! we obtain the following formula forh8(x):

h8~x,t !5 i E dq qhq~ t !exp~ iq•x!. ~17!

Substituting Eq.~17! into Eq.~16!, we get for the integral

E dx~hx8!252E E dq dq8qq8hq~ t !hq8~ t !E dx

3exp@ i ~q1q8!x# ~18!

or

E dx~hx8!25E dq S~q,t !, ~19!

where

S~q,t !5hq~ t !h2q~ t ! ~20!

is the structure factor at timet.
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Substituting the Fourier components from Eq.~14!, we
obtain

E dx~hx8!25E dq hq~0!h2q~0!exp@22uquzt#

5E S~q,0!exp@22uquzt# ~21!

whereS(q,0) is the structure factor of the initial surface.
Since, for the fractal aggregate in the region of intere

the structure factor behaves asS(q,0);q22D, we obtain the
following equation:

E dx~hx8!25E dq q22D exp@22uquzt#. ~22!

Assuming that the integration is taken fromq50 to q
5` ~i.e., the fractal is ideal!, integration of Eq.~22! yields

E dx~hx8!25
1

z
~2nt !~D23!/zGS 32D

z D . ~23!

Substituting this expression into Eq.~16! yields

L5L0~11kt~D23!/z!. ~24!

For small times it can be approximated as

L5L0kt~D23!/z. ~25!

FIG. 5. The effective correlation functionČ(x,t) of fractal clus-
ter with E52 for different times of evolution.

FIG. 6. First zero of effective correlation function~in lattice
units! as a function of time for fractal clusters with differentE.
t,

On the other hand, for the fractal surface the length
equal,

L;L0R0
2D , ~26!

whereR0 is the lower cutoff of fractality.
Equating Eqs.~25! and ~26! yields the following power

law dependence forR0 :

R0;t ~32D !/zD;ta. ~27!

Thus, provided the value of the fractal dimension of t
particle and the mechanism of relaxation are known, we
calculate the time dependence of the lower cutoff of frac
ity. For example, when a typical DLA fractal withD51.71
undergoes relaxation under conservative conditions (z54),
the exponenta will be equal to 0.19.

RESULTS AND DISCUSSION

The structural changes that occur during the evolution
fractal aggregates were investigated by the analysis of co
lation functions of the resulting structures. It was shown th
for large x, the correlation functionC(x,t) for time t is al-
most the same as that for the initial cluster,C(x,0), in the
full agreement with@11#. The effective correlation function
of the system,Č(x,t)5C(x,t)2C(x,0), has a characteristi
shape~Fig. 5!. Due to the increase of the characteristic s
of the particles, the value ofC(x,t) grows in comparison

FIG. 7. Box-counting analysis of fractal cluster withE52 for
different times of evolution.

FIG. 8. Lower cutoff of fractality~in lattice units! as a function
of time for fractal clusters with differentE.
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with C(x,0), thus leading to positive values ofČ(x,t) for
small x. At the same time, for relatively largex the neigh-
borhood is depleted, thus leading to the characteristic m
mum of Č(x,t). For largex,C(x,t) does not change com
pared toC(x,0) and thusČ(x,t)'0.

The first zero ofČ(x,t), which we denotexc , roughly
corresponds to the mean size of single-phase domains.
temporal dependence ofxc shown on Fig. 6 can be wel
approximated by the equation

xc5A~ t1B!a. ~28!

whereA andB are constants anda is a scaling exponent. Th
constantB is determined by early-stage evolution of the sy
tem @20,21#.

Structural changes occurring during evolution were a
studied by box-counting analysis of the surface~Fig. 7!. The
cluster was covered by a square grid with characteristic
l, and the number of squares,N, containing at least one poin
belonging to the cluster surface was plotted as a function
l in log-log coordinates. For relatively smalll, the slope of
the corresponding curve is 1~the surface is one dimen
sional!, whereas for largerl, the slope is equal to the fracta
dimension of the object,D51.71. The intersection of thes
two linear segments defines the characteristic lengthRa , also
proportional to the characteristic length scale on which
fractal structure is destroyed~Fig. 8!.

Results of the correlation function analysis,xc vs t, for
clusters with differentE, are shown in Table I, and for th
box-counting analysis,Ra vs t, in Table II. For evolution
without fragmentation, values obtained for the scaling ex
nentsa agree well. The values lie in the range 0.2160.01 for
all structures, thus exhibiting good agreement with theory
should be noted that values obtained forB are relatively
small ~B is much less than the characteristic time of evo
tion!, i.e., the characteristic size of the single-phase dom
grows by a power law,L(t);ta.

For evolution with fragmentation, values obtained for t
scaling exponentsa are larger than in the first case. Nume

TABLE I. ParametersA, B, anda in Eq. ~28! obtained from the
analysis of correlation functions.

E A B a

0.0 2.3260.05 2.260.9 0.24960.003
0.3 2.4460.07 5.761.3 0.26260.005
0.5 2.7360.08 7.061.4 0.25260.005
1.0 3.9260.03 3.260.3 0.21660.001
1.5 4.4060.05 13.061.0 0.20560.002
2.0 5.7360.06 21.060.4 0.21360.002
.
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cal values of scaling exponents, determined from correla
function analysis and box-counting analysis, are significan
different, probably due to problems with the box-counti
analysis for a system having relatively small isolated p
ticles. Interestingly, for later stages of evolution, a transiti
to a5 1

3 takes place when the initial fractal structure of t
cluster is completely destroyed, and evolution proceeds a
the initially homogeneous system.

CONCLUSIONS

The evolutionary path of the system was shown to dep
on the geometry of the initial particle as described by
lower cutoff of fractalityRa and gyration radiusRg and the
value of the fractal dimensionD. The following main fea-
tures of the evolution were determined.

During the evolution, the fractal structure is destroyed
small length scales; however, on the larger length scales,
generally conserved.

The value of the scaling exponent for the evolution o
fractal particle without fragmentation,a50.2160.01, is
substantially different from that in the homogeneous ca
a50.3360.01. For evolution with fragmentation, the appa
ent value of the scaling exponent increases withRa /Rg . For
the late stages of evolutiona presumably reaches the valu
of 1

3.
The theory developed above has been proven valid in

particular case. It can possibly be applied for prediction
behavior of other inhomogeneous systems in diffusio
driven evolutionary processes, thus providing some gui
lines for further modeling and experimental studies.
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TABLE II. ParametersA, B, anda in Eq. ~28! obtained from the
box-counting analysis of the surface.

E A B a

0.0 8.760.5 0.063.0 0.1960.01
0.3 6.660.6 21.263.6 0.2360.02
0.5 4.260.3 2.063.0 0.2560.01
1.0 4.760.2 6.661.9 0.2260.01
1.5 5.060.5 32611 0.2160.01
2.0 7.360.3 3.762.7 0.2160.01
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